Enzyme-Linked Immunosorbent Assay for Determination of Miroestrol in Pueraria candelolli

Associated Products
Gorawit Yusakul1, Orapin Udomsin2, Thaweesak Juengwatanatrakul3, Hiroyuki Tanaka4, Chaiyo Chaichantipyuth5, Waraporn Putaln6

Introduction: Various dosage forms of Pueraria candelolli are widely applied in folk Thai medicine for rejuvenating purpose in aged people, which correlated with its pharmacological activities reported by pre-clinical and clinical trials for menopausal symptoms. Therefore, standardized products of this plant are needed by consumers and health care personnel. Miroestrol (ME), a potent and stable phytoestrogen in P. candelolli, exhibited potential to be biomarker for quality control of P. candelolli samples and its products. Materials and methods: Indirect competitive enzyme-linked immunosorbent assay (ELISA) for ME determination was developed and validated by using polyclonal antibody from rabbit immunization. The correlation of ME determination between our ELISA with standard HPLC method was investigated. Finally validated ELISA was applied for P. candelolli associated products. Results: Developed ELISA was comparable with published HPLC method (R² = 0.9996) in samples with various ME contents, moreover this ELISA could determine ME in samples undetectable by HPLC because of its

Abstract
higher sensitivity. For application, the *P. candollei* involved preparations contained ME of 0.766-12.108 µg/g dry wt.

Conclusion: The developed ELISA was high performance for reliable ME determination, which could be applied for *P. candollei* quality control in research fields and industrial productions.

Keywords: *P. candollei*, miroestrol, enzyme-linked immunosorbant assay, phytoestrogen, polyclonal antibody

Introduction

Pueraria candollei var. *mirifica* is phytoestrogen enrich plant which its tuberous root was used widely in traditional Thai medicine system for smoothing skin, enhancing memory and rejuvenating in aged man and woman (Anusarnsoondhom, 1931). The randomized clinical trials to evaluate efficacy and safety of *P. candollei* var. *mirifica* showed that the climacteric scores of menopause woman were declined, whereas no significant side effects were observed (Chandeying and Lamlertkittikul, 2007; Lamlertkittikul and Chandeying, 2004; Virojchaiwong et al., 2011), which efficacy of 50 mg daily dose *P. candollei* var. *mirifica* was not significantly different from 0.625 mg conjugated equine estrogen with/without medroxyprogesterone acetate (Chandeying and Sangthawan, 2007). Overall trials suggested that this plant benefited for menopausal related disorders.

Isoflavonoid and chromene compounds, including puerarin, daidzin, genistin, daidzein, genistein, miroestrol (ME), deoxymiroestrol and isomiroestrol, are chemical components mediating for estrogenic effects of *P. candollei* var. *mirifica*. ME as biomarker for quality control of *P. candollei* exhibited strong estrogenic activity. Analytical method of ME using HPLC-UV was developed as described (Yusakul et al., 2011) for its determination in *Pueraria candollei*. Disadvantage of HPLC method for minor compounds in plant sample is interference of other compounds which need for sample pretreatment resulting interested compound loss. Immunoassay with polyclonal antibody exhibited various advantages, including high sensitivity (Chappey et al., 1992), inexpensive, short time production and low technology and skill required.

In this report, we aim to compare performance of our developed ELISA with HPLC method, and then to apply for ME determination in *P. candollei* associated products.
Materials and Methods

Production of polyclonal antibody

ME (>90% purity) was purified from tuberous root cortex of *P. candollei*, which obtained compound was confirmed using H1-NMR with authentic standard. ME was conjugated to bovine serum albumin (BSA) as immunogen, whereas the compound was conjugated to ovalbumin (OVA) as non-relevant coating in ELISA test using periodate oxidation reaction. A male New Zealand White rabbit was immunized with ME-BSA emulsified with Freund’s adjuvants for anti-ME antibody production, which total IgG as source of antibody was purified from rabbit serum using Protein G FF affinity column (Amersham Pharmacia Biotech, Sweden).

Indirect competitive ELISA

Purified anti-ME antibody was characterized and used to develop competitive ELISA for ME determination. The 96-well plate was coated with 5 μg/ml ME-OVA and then treated with 1% gelatin consecutively. In competitive step, 50 μL serial concentrations of standard ME or sample prepared in 20% ethanol were added to each well, and then 50 μL of 12.5 μg/ml anti-ME antibody diluted in phosphate-buffered saline with 0.05% Tween 20 (TPBS) containing 0.25% gelatin and 0.25% BSA was allowed to react with ME in each well for 1 h. Next, the plate was washed three times with TPBS, and a diluted solution (1:1,000) of peroxidase conjugated goat anti-rabbit IgG antibody in TPBS containing 0.5% gelatin was reacted with fixed polyclonal antibody for 1 h. After washing the plate three times with TPBS, 100 μL of substrate solution, 100 mM citrate buffer (pH 4.0) containing 0.003% H2O2 and 0.3 mg/mL of ABTS, was added to each well and incubated for 15 min. The absorbance at 405 nm was measured using a microplate reader (Model 550 Microplate Reader BioRad Laboratories, CA, USA). All reactions were carried out at 37°C.

Method validation

P. candollei samples with various ME contents were used as samples for correlation experiment between developed ELISA and HPLC method (Yusakul et al., 2011). The chromatography was performed using a PerkinElmer Series 200 LC pump connected to a PerkinElmer 785A UV/VIS detector. An RP-18 column (LiChroCART®, 125 mm×4 mm, 5 μm particle size, Merck, Germany) was used. The mobile phase consisted of 20% acetonitrile adjusted pH with 1.5% acetic acid, which flow rate of mobile phase was set at 1.0 mL/min. Finally the well characterized ELISA was applied for ME determination in *P. candollei* associated preparations.

Results and discussions

Correlation with HPLC method

ME contents in each sample by ELISA was correlated with value from HPLC method with high coefficient of determination (R²=0.9996). The high correlation indicated that developed ELISA was comparable with HPLC method in high ME containing samples. Moreover, some samples undetectable by HPLC method could be quantified by ELISA due to its 1000 times higher sensitivity approximately, when was calculated by limit of quantification (LOQ).

Application

Characterized ELISA was applied to determine ME in *P. candollei* associated products. Because *P. candollei* products commonly were developed from part of tuber without cortex containing small amount of ME, and Thai herbal products composed of many medicinal plant, the finish product contained of too low ME content to determine using HPLC-UV method. There are several advantages of ELISA over HPLC with UV detector for ME determination in products; the firstly ELISA could detect with very low concentration requiring small sample amount, the secondly ELISA determined without any chemical interference from both *P. candollei* and other medicinal plants, the finally ELISA could be applied with many samples in short of analysis time. The *P. candollei* involved preparations contained 0.766–12.108 μg/g dry wt. of ME, which was 0.179-3.483 μg/unit when calculated by weight of a capsule or a tablet (table 1), which coefficient of variation (CV) for all ME determination in these products was maximum of 7.56 %. Our developed ELISA could be applied for ME quantification with various contents in different composition product with small amount of sample needed.
12.108 µg/g dry wt. of ME content. The ELISA could be applied to
 various ME contents. The ELISA was applied to
 P. candollei samples and its preparations. Validated ELISA was comparable with published HPLC method (R^2 = 0.9996) in samples with various ME contents. The ELISA was applied to P. candollei involved preparations, which there were 0.766-12.108 µg/g dry wt. of ME content. The ELISA could be apply for quality control of P. candollei samples before its using in pre-clinical and clinical researches, and of P. candollei associated products or materials during its development and production in industrial level.

Conclusion
Our developed ELISA was the first immunoassay with high sensitivity to analyze ME, which exhibit potential as biomarker for quality control of P. candollei samples and its preparations. Validated ELISA was comparable with published HPLC method (R^2 = 0.9996) in samples with various ME contents. The ELISA was applied to P. candollei involved preparations, which there were 0.766-12.108 µg/g dry wt. of ME content. The ELISA could be apply for quality control of P. candollei samples before its using in pre-clinical and clinical researches, and of P. candollei associated products or materials during its development and production in industrial level.

Acknowledgments
This work was supported in part by the Faculty of Pharmaceutical Science and Graduate School, Khon Kaen University, Thailand. The authors thank Suranaree University of Technology and Ubon Rajathani University for providing of P. candollei plant samples.

References