Study on Optimal Condition for Salmonella spp. Detection in Drinking Water by Polymerase Chain Reaction
Nattaporn Janjarasjitt1, Tipmontha Leukyal1, Sirima Suvarakuta Jantama1

Introduction: Contamination of Salmonella species in foods and water is a major problem affecting a worldwide industry and hospitalization. Generally, detection of Salmonella in drinking water is widely performed by conventional culture method. The method is laborious and requires 3-7 days to obtain results. However, the prevention and control of infection usually depend on rapidity, sensitivity and accuracy of diagnostic method. Therefore, rapid, easy and accurate detection method would be greatly developed to detect the contamination of Salmonella in foods and drinking water. The objectives of this study were to determine the effectiveness of different DNA extraction methods and enrichment media for detection of Salmonella spp. contamination in drinking water by Polymerase Chain Reaction (PCR) technique. Material and Methods: In a pre-enrichment step, Salmonella typhi and Salmonella typhimurium are cultured in 3 different pre-enrichment media including Luria broth (LB), Selenite cystine broth (SCB) or Tetrathionate broth (TTB) at 37°C overnight. Then DNA extractions were performed by 3 different methods including boiling DNA method, phenol-chloroform method or lysis-buffer method. The specificity of PCR detection was determined using two sets of primers including hilA and P1-M13. The sensitivity for S. typhi and S. typhimurium detection using hilA primer set was detected at the lowest level of 1 CFU/ml in both strains. In contrast, the sensitivity for S. typhi and S. typhimurium detection was found at 104 and 105 CFU/ml, respectively, when using P1-M13 primer set. In addition, it was found that S. typhi and S. typhimurium with the concentration of 1 CFU/ml in drinking water could be detected when the pre-enrichment step was performed at 37°C overnight. Conclusion: The results demonstrated that PCR technique could be further developed as a rapid detection method for screening of Salmonella contamination in drinking water. However, the pre-enrichment media and DNA extraction methods were not revealed the significant difference in PCR detection step. The boiling out method for DNA extraction was recommended because of its simplicity and low cost.

Keywords: Salmonella spp., polymerase chain reaction, DNA extraction, pre-enrichment

Antibacterial activity of Garcinia mangostana against Methicillin-Sensitive Staphylococcus aureus (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA)
Manipha Chaemsuwan1,2, Nattharat Jearapong1,2, Waranya Chatuphonprasert3, Kanokwan Jarukamjorn1,2

Introduction: Garcinia mangostana has been traditionally used for skin infection but little is known about its antimicrobial activity. Materials and Method: Antibacterial activity of G. mangostana extracts from different extraction solvents against Methicillin-Sensitive Staphylococcus aureus (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) was performed using agar well diffusion. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined by microdilution method. In addition, the content of chemical markers (total phenolic, flavonoids, and anthocyanin) and tannin contribution of the extract were analyzed. Results: The ethanolic extract of G. mangostana showed the highest antibacterial activity against MSSA with MIC at 6.25 μg/ml and MBC at 12.50 μg/ml, respectively, and activity against MRSA with MIC and MBC at the same values of 6.25 μg/ml, whereas oxacillin, a positive control, showed MIC against MSSA at 0.625 mg/ml. The tannin contribution might be a factor associated with the antibacterial activity of the G. mangostana extracts, at least in part, in which the ethanolic extract had tannin contribution about 67.80%. Conclusion: These observations suggested the ethanolic extract of G. mangostana as a promising antibacterial candidate against MSSA and MRSA. Therefore, it is of interest to further study whether an active constituent mangostin would have antibacterial role against MSSA and MRSA.

Keywords: Garciniamangostana, Staphylococcus aureus, MSSA, MRSA, antibacterial

1Faculty of Pharmaceutical Sciences, Khon Kaen University
2Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Khon Kaen University
3Faculty of Medicine, Mahasarakham University

Corresponding author: Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, National Research University-Khon Kaen University, Khon Kaen 40002 Thailand, Tel/Fax 043-202305 e-mail: kanok_ja@kku.ac.th

168